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Abstract. We give an elementary proof of the fact that the only solutions of the
Diophantine equation x2 � 2 � yn for n > 1 are �x; y; n� � ��5; 3; 3�.

Introduction. It is known due to T. Nagell (�2�) that the equation of the title has only the
one solution �x; y� � �5; 3� for n > 1. But, Nagell�s proof is not elementary as it uses a deep
result of K. Mahler on binary quadratic forms. More recently, J. H. E. Cohn (�1�) investigated
the equations x2 � 2k � yn for odd k. However, he merely refers to Nagell�s proof when
k � 1 and his (elementary) proof for higher k does not work for k � 1. In the literature, there
are essentially two kinds of methods used to solve such Diophantine equations. Either one
uses transcendental number-theoretic techniques or a completely elementary technique
manipulating congruences. The purpose of this note is to give an elementary proof of
Nagell�s result. We shall use a polynomial identity in the proof as the usual elementary
approach turns out to be inadequate.

Some standard reductions. Suppose x; y; n satisfy the equation of the title. It easily follows
that x; y; n must all be odd. Writing the equation as yn � �x� ���

2
p

i��xÿ ���
2
p

i� and noting that
Q� �������ÿ2
p � has class number 1, it follows that one must have x� ���

2
p

i � an where
a � �m� ir

���
2
p � for some integers r;m. Then, xÿ ���

2
p

i � �a n and subtracting, one has
an ÿ �a n � 2

���
2
p

i. One can rewrite this asX��nÿ1�=2�

l�0

n
2l � 1

� �
�ÿ2�lmnÿ2lÿ1r2l�1 � 1:

This gives r � �1 and, reading modulo 2, also that both n;m are odd.
We note that, conversely, if there are integers m; n; r satisfying the above equation, then

the integers x; y defined by them give a solution of the Diophantine equation of the title.
For arbitrary integers m; n; r, let us write

a�m; n; r� �
X��nÿ1�=2�

l�0

n
2l � 1

� �
�ÿ2�lmnÿ2lÿ1r2l�1:

Note that a�m; n; r� � an ÿ �a n

aÿ �a
where a � �m� ir

���
2
p �. We need to solve a�m; n; r� � 1 for

m; n; r. We start with some useful observations:
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Lemma. (i) If a�m; n; r� � 1, then r � 1.
(ii) a�m; n; 1� �j ÿ 1 for any m; n.

(iii) If a�m; n; 1� � 1, then a�m; d; 1� � 1 for every djn.
(iv) For any m, an :� a�m; n; 1� satisfies the following recursion in n:

an�1 � 2man ÿ �m2 � 2�anÿ1.
(v) If n � 3 and a�m; n; 1� � 1, then m � �1

i.e., the only solutions of x2 � 2 � y3 are �x; y� � ��5; 3�.
(vi) If a�m; n; 1� � 1, then n � 3 mod 4.

In this case, if n �j 3, and 2s is the highest power of 2 dividing nÿ 3, then m2 �
1� 2s mod 2s�1. In particular, m �j 1 if n �j 3 i.e., x2 � 2 � 3n has no solutions if
n �j 1; 3.

P roof. (i) As we noticed above, if a�m; n; r� � 1, then m; n are odd and r � �1. Now,
m2 � 1 mod 4; so mnÿ1 � �m2��nÿ1�=2 � 1 and mnÿ3 � 1 mod 4. Further, we have

1 � a�m; n; r� �
X�nÿ1�=2

l�0

n
2l � 1

� �
�ÿ2�lmnÿ2lÿ1r2l�1

� n
1

� �
mnÿ1r ÿ 2

n
3

� �
mnÿ3r3 � nr ÿ 2r3 n

3

� �
mod 4:

As 3ÿ1 � ÿ1 mod 4, one has 2
n
3

� �
� n�nÿ 1��nÿ 2�

3
� ÿn�nÿ 1��nÿ 2� mod 4. Thus,

1 � a�m; n; r� � nr � r3n�nÿ 1��nÿ 2�mod 4:

If n � 1 mod 4, one has then 1 � r mod 4.
If n � ÿ1 mod 4, one has 1 � ÿr ÿ 6r3 mod 4.
In either case, r �j ÿ 1. As r � �1, we get r � 1.
(ii) If a�m; n; 1� � ÿ1, then evidently a�m; n;ÿ1� � 1 from the very definition of a�m; n; r�.

This contradicts (i).

(iii) Now
a�m; n; 1�
a�m; d; 1� �

an ÿ �a n

ad ÿ �a d is in Q \ Z � Z. So, a�m; d; 1�ja�m; n; 1� if djn. This proves

our assertion in view of (ii).

(iv) Now al � al ÿ �al

aÿ �a
for any l where a � m� ���

2
p

i. So, one has

�aÿ �a�an�1 � an�1 ÿ �an�1 � a�an ÿ �a n� � a�a n ÿ �an�1

� a�an ÿ �a n� � a�a n ÿ �aan � �aan ÿ �an�1

� a�an ÿ �a n� � a�a��anÿ1 ÿ anÿ1� � �a�an ÿ �a n�
� �a� �a��an ÿ �a n� ÿ a�a�anÿ1 ÿ �anÿ1�
� 2m�an ÿ �a n� ÿ �m2 � 2��anÿ1 ÿ �anÿ1�:

Therefore, an�1 � 2man ÿ �m2 � 2�anÿ1.
(v) Is obvious as

1 � a�m; n; 1� �
X�nÿ1�=2

l�0

n
2l � 1

� �
�ÿ2�lmnÿ2lÿ1���

reduces to 1 � 3m2 ÿ 2 i.e., m2 � 1 then.
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(vi) Recall that m; n must be odd as a�m; n; 1� � 1. Now, if n � 1 mod 2t, then

2k n
2k� 1

� �
� 2kn�nÿ 1�
�2k� 1�2k

nÿ 2
2kÿ 1

� �
� 0 mod 2t�1

for k ^ 3 as
2k

2k
is even i.e., the power of 2 dividing 2k is less than k.

Suppose 2a is the highest power of 2 dividing nÿ 1 i.e., n � 1� 2a mod 2a�1. Using the
above fact and writing (�) modulo 2a�1, one gets

1�
X�nÿ1�=2

l�0

n
2l � 1

� �
�ÿ2�lmnÿ2lÿ1� n

1

� �
mnÿ1 ÿ 2

n
3

� �
mnÿ3� 4

n
5

� �
mnÿ5 mod 2a�1:

Let us look at the three terms one at a time. As m is odd, we have m2a � m��2a�1� �
1 mod 2a�1 and as n � 1 mod 2a, we also have mnÿ1 � 1 mod 2a�1. Using n � 1� 2a mod
2a�1, the first term is then

nmnÿ1 � 1� 2a mod 2a�1:

Now, the second term is 2
n
3

� �
mnÿ3 � n�nÿ 1��nÿ 2�

3
mnÿ3. Let us substitute n � 1�

2a mod 2a�1 and write 3ÿ1 for the inverse of 3 modulo 2a�1. Then, the second term is

3ÿ1�1� 2a�2a�2a ÿ 1�mnÿ3 mod 2a�1:

Using further the fact that 2at � 2a mod 2a�1 if t is odd, the second term is seen to be � 2a

modulo 2a�1.
Finally, the third term is

n�nÿ 1��nÿ 2��nÿ 3��nÿ 4�
30

mnÿ5

� �1� 2a�2a�2a ÿ 1��2a ÿ 2��2a ÿ 3�
30

mnÿ5 mod 2a�1

� �1� 2a�2a�2a ÿ 1� 2a ÿ 2
2

� �
�2a ÿ 3�mnÿ5 mod 2a�1

� �1� 2a�2a�2a ÿ 1��2aÿ1 ÿ 1��2a ÿ 3�mnÿ5 mod 2a�1:

If a > 1, 2aÿ1 ÿ 1 is odd, and the third term is � 2a mod 2a�1.
Therefore, if a > 1, the sum of the three terms is

1 � �1� 2a� ÿ 2a � 2a � 1� 2a mod 2a�1

which is absurd. Hence, we conclude that if a�m; n; 1� � 1, then a must be 1 i.e., the
statement n � 1� 2a mod 2a�1 simply becomes n � 3 mod 4. This was the first assertion
in (vi).

Finally, if n � 3 mod 2s, then

2k n
2k� 1

� �
� 2kn�nÿ 1��nÿ 2��nÿ 3�
�2k� 1�2k�2kÿ 1��2kÿ 2�

nÿ 4
2kÿ 3

� �
� 0 mod 2s�1

for k ^ 3 as the power of 2 dividing the denominator is at the most k.
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Taking for s the maximum possible value, we have n � 3� 2s mod 2s�1. As before, we
rewrite (�) modulo 2s�1 using the above congruence to get:

1� a�m; n; 1��
X�nÿ1�=2

l�0

n
2l � 1

� �
�ÿ2�lmnÿ2lÿ1� nmnÿ1 ÿ 3ÿ1n�nÿ 1��nÿ 2�mnÿ3

� 15ÿ1 n�nÿ 1��nÿ 2��nÿ 3��nÿ 4�
2

mnÿ5 mod 2s�1:

Substituting n � 3� 2s mod 2s�1, this becomes

1 ��3� 2s�mnÿ1 ÿ 3ÿ1�2s � 3��2s � 2��2s � 1�

� 15ÿ1�3� 2s� 2s � 2
2

� �
�2s � 1�2s�2s ÿ 1�mnÿ5 mod 2a�1:

Again, we look at the three terms one by one.
Since m2s � 1 mod 2s�1, we have mnÿ3 � 1 mod 2s�1 i.e., mnÿ1 � m2 mod 2s�1. Using this

as before with the evident observation that 2st � 2s mod 2s�1 if t is odd, the first term is

�3� 2s�mnÿ1 � �3� 2s�m2 � 3m2 � 2s mod 2s�1:

Similarly, the second term is � 2s ÿ 2 mod 2s�1.
The third term is

15ÿ1�3� 2s� 2s � 2
2

� �
�2s � 1�2s�2s ÿ 1�mnÿ5

� 15ÿ1�3� 2s��2sÿ1 � 1��2s � 1�2s�2s ÿ 1�mnÿ5 � t2s � 2s mod 2s�1

because t is odd. We have used the fact that s > 1 (i.e., that n � 3 mod 4) which we proved
already. So, the sum of the three terms is

1 � a�m; n; 1� � 3m2 ÿ 2� 2s mod 2s�1:

Thus, one obtains 3�m2 ÿ 1� � 2s mod 2s�1. In other words,

m2 ÿ 1 � 3ÿ12s � 2s mod 2s�1:

The proof of the lemma is complete.
We shall use another identity to augment some of the information given by the lemma and

complete the solution of the Diophantine equation. It is not clear to us as to how to use parts
(iii) and (iv) of the lemma.

A polynomial identity to complete the proof. As an off-shoot of an algebro-geometric
question about embeddings of the affine line in 3-space, the curious polynomial identity

X�k=2�

l�0

�ÿ1�l kÿ l
l

� �
�XY�l�X � Y�kÿ2l �

Xk

d�0

XdYkÿd

was noticed in (�3�). This turns out to suit our present purpose well. Take for X;Y the
complex numbers a and �a, and k � nÿ 1 with n odd. As a � m� ���

2
p

i, we note that
a�a � m2 � 2 and a� �a � 2m. Now, we have

a�m; n; 1� � an ÿ �a n

aÿ �a
� Pnÿ1

d�0
ad �a nÿ1ÿd:
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Using the identity, we get therefore

a�m; n; 1� �
X�nÿ1�=2

l�0

�ÿ1�l nÿ 1ÿ l
l

� �
�m2 � 2�l�2m�nÿ1ÿ2l:�A�

Let us observe in passing that we have obtained for any odd n an identity in Z�T�:
X�nÿ1�=2

l�0

�ÿ1�l nÿ 1ÿ l
l

� �
�T2 � 2�l�2T�nÿ1ÿ2l �

X�nÿ1�=2

r�0

n
2r � 1

� �
�ÿ2�rTnÿ2rÿ1:

To complete the solution of the Diophantine equation, we start with the assumption that
a�m; n; 1� � 1. We may also take n > 3 because we have already dealt with n � 3 in the
lemma and we know that n is odd. We shall write an instead of a�m; n; 1� for simplicity. By the
lemma (vi), one has an integer a ^ 2 such that n � 3� 2a mod 2a�1 and m2 � 1� 2a mod 2a�1.
Let us compute an mod 2a�1 using (A).

Note that �m2 � 2�k � 3k or 3k � 2a mod 2a�1 according as k is even or odd. Therefore,
mod 2a�1, one has

1 � an �
X
l even

nÿ 1ÿ l
l

� �
3l�2m�nÿ1ÿ2l ÿ

X
l odd

nÿ 1ÿ l
l

� �
�3l � 2a��2m�nÿ1ÿ2l

�
X�nÿ1�=2

l�0

�ÿ1�l nÿ1ÿ l
l

� �
3l�2m�nÿ1ÿ2lÿ

X
l odd

nÿ1ÿ l
l

� �
2a�2m�nÿ1ÿ2l mod 2a�1:

Since n ^ 3 mod 4 by lemma (vi), we know that �nÿ 1�=2 is odd. Also, unless l � �nÿ 1�=2,
we get 2a�2m�nÿ1ÿ2l � 0 mod 2a�1. Therefore, we have

1 � an �
X�nÿ1�=2

l�0

�ÿ1�l nÿ 1ÿ l
l

� �
�2m�nÿ1ÿ2l3l ÿ 2a mod 2a�1

where 2a is the term corresponding to l � �nÿ 1�=2 in the second sum.
Finally, lemma (vi) gives m2 � 1� 2a mod 2a�1 which implies that �2m�2r � 22r mod 2a�1

for each r > 0. Thus,

1 � an �
X�nÿ1�=2

l�0

�ÿ1�l nÿ 1ÿ l
l

� �
2nÿ1ÿ2l3l � 2a mod 2a�1:

Writing bn �
X�nÿ1�=2

l�0

�ÿ1�l nÿ 1ÿ l
l

� �
2nÿ1ÿ2l3l, we get

bn � 1� 2a mod 2a�1:�B�

Now bn � bn ÿ b
n

bÿ b
where b � 1� ���

2
p

i. Let us write nÿ 3 � 2ab with b odd. The binomial

expansion gives b2ab � 1� 2abb� 2a�1l for some l 2 Z� �������ÿ2
p �. Since b3 � bÿ 6, we get

bn � bn ÿ b
n

bÿ b
� 1� 2a�1m for some m 2 Z� �������ÿ2

p �. As m 2 Z \Q � Z, we finally obtain bn � 1

mod 2a�1. This contradicts (B). We have therefore proved Nagell�s result:
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Theorem. The Diophantine equation x2 � 2 � yn, n > 1 has only the solutions
�x; y; n� � �� 5; 3; 3�.
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